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Abstract—This paper presents a unified chassis control (UCC) with 
electronic stability control (ESC) and active front steering (AFS) for 
enhancement of vehicle stability. Two structures are used in this 
control strategy named as the higher and lower levels of control.   
The adaptive sliding- mode control (SMC) law is used in the higher-
level controller in order to generate the desired yaw moment. The 
distribution of control yaw moment into tire forces is accomplished in 
the lower-level controller. The simulation on vehicle simulation 
software, CarSim, is carried out to show the proposed method’s 
effectiveness. 

1. INTRODUCTION 

Over the past two decades, research on active chassis control 
approaches have been increasingly conducted, developed and 
practically implemented to improve driving stability, handling 
and maneuverability for vehicles. These include active chassis 
control systems such as Anti-lock Braking System (ABS), 
active suspension, active driveline and Electronic Stability 
Control (ESC) improves vehicle handling performance and 
lateral stability. The basic requirement for safety of ground 
vehicles is dependent on the yaw stability improvement by 
active control. Active front steering (AFS) has been found as 
an innovative method in which a corrective steering angle is 
added to the driver input and it can improve the steering 
comfort and vehicle stability control [1]. Since AFS can 
generate yaw moment without braking so it is advantageous 
over electronics stability control. So stability of vehicle can be 
guaranteed even in the higher speed and it ensured enhanced 
ride comfort.   

Many researchers have tried so that effective coordination of 
AFS and ESC can be achieved for vehicle stability control as 
in [2-5]. In 2008 Cho et al. [6] proposed a Unified Chassis 
Control (UCC) approach. Two-level control structure is used 
in UCC named as higher-level and lower-level controllers. In 
the higher-level controller, adaptive sliding mode control 
theory is used to derive control yaw moment. In the lower-

level controller, the distribution of control yaw moment into 
tire forces is accomplished. In the UCC, an optimum 
integration of AFS and ESC is proposed so that the braking 
force of ESC can be minimized with the help of AFS. The 
optimization problem was solved by Karush-Kuhn-Tucker 
(KKT) optimality condition [7]. 

In this paper, in order to deal with the parameter uncertainties 
and external disturbances, an adaptive sliding mode control 
based higher-level controller is designed to obtain the external 
yaw moment.  The control objectives is the tracking of desired 
yaw motion and maintaining stability of vehicle under critical 
maneuver and this is explicitly studied in this work. The 
proposed controller’s effectiveness is evaluated through 
simulation on vehicle simulation package CarSim. 

The rest of this paper is organized as follows: section 2 
presents a model of a vehicle. In section 3 the design 
procedure of the adaptive sliding mode controller and yaw 
moment distribution scheme is described. The simulation is 
shown in section 4. Finally the section 5 concludes the paper 

2. SYSTEM MODELING  

The Fig. 1 shows the three degree of freedom (3DOF) plane 
vehicle model [8]. Assuming small steering angle, we can 
describe the model as 
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Fig. 1: A vehicle model [8] 
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where xa , rf  and zI  is longitudinal acceleration, rolling 

resistance and vehicle inertia along the z-axis respectively. 

Furthermore zM is the external yaw moment generated by 

longitudinal tire forces. It is seen from Fig. 1 that the external 
yaw moment can be found as 

( )
2z xfl xfr xrl xrr

d
M F F F F                              (2)   

where d  is the track width.  

The linear bicycle model can be obtained from the 3DOF 
vehicle model by assuming that the left and right tires have the 
same steering angles and slip angles, and the longitudinal 
velocity of the vehicle maintains a constant. The front and rear 
tire slip angles for linear tire forces of bicycle model as shown 
in Fig. 2 can be approximated by 

 
Fig. 2: Linear bicycle model [8] 
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where   is the vehicle side slip angle, f  and r are the 

front and rear side slip angles respectively. The tire lateral 
forces can be expressed in terms of the tire slip angles as 
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           (4) 

where fc  and rc  are the front and rear tire cornering stiffness 

respectively. Hence using equations (1) to (4) the expression 
for 2 degrees of freedom (2DOF) vehicle model can be written 
as [9] 
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where 1d  and 2d  are called external disturbances and 

unmodelled dynamics. Rewriting the vehicle model as 

( ) ( ) ( ) ( )x t Ax t Bu t d t                                       (6) 
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3. SLIDING MODE CONTROLLER DESIGN 

3.1 Reference generation    

The objective of this control is to track the desired yaw rate. 
The 2DOF vehicle with steering input gives the reference 
vehicle model. The reference yaw rate is given by an algebraic 
formula with the assumption that lateral tire force is linear 
[10].  

2 2

( )

( ) ( )
f r f r x

d f
f r f r x r r f f

c c l l v
r

c c l l mv c l c l





  
     (7) 

The desired yaw rate as mentioned in (7) is not always 
attainable under all driving conditions because the vehicle 
lateral acceleration cannot exceed the tire cornering capability, 
thus the desired yaw rate must be bounded by the following 
equation and it depends on the friction coefficient of the road 
  

| |d
x

g
r

v


                                                      (8) 

where g  is the acceleration due to gravity. Thus the target 

yaw rate is given by 

, | |

( ), | |
d d lim

target
lim d d lim

r r r
r

r sgn r r r


  

      (9) 

3.2 Adaptive sliding mode controller design    

The controllers designed with a linear model cannot handle 
model uncertainties and external disturbances in highly 
nonlinear vehicle system. So an adaptive sliding mode 
controller is designed to add robustness to the controller with 
respect to vehicle system parametric uncertainties and 
disturbances. A Proportional Integral (PI) sliding surface is 
used and it is defined as 

1 2 0

t
s e edt                                                 (10) 

where de r r  is the yaw rate error. Moreover 1  

and 2  are positive weighing coefficients. 

Taking the derivative of s in (10), we get 

1 2s e e                                                         (11) 

Using (5) and (11) yields 
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Following constant plus proportional reaching law [11] is 
used. 

( )ps k s ksign s                                    (13) 

where 0k   is the constant gain and 0pk   is the 

proportional gain. The control gain k is replaced by estimated 

gain k̂ , derived using the adaptive law [12] as given below. 

1ˆ | |k s


                                                     (14) 

where, 0   is the adaptive gain. Using (5) to (14) we get 

the control law as 
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3.3 Stability Analysis  

Stability of the controlled system can be proved by 
considering the following Lyapunov function. 

21

2
V s                                                         (16) 

Taking the time derivative of (16) we have 
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If k̂ > 2d , then the 
.

V < 0 which implies asymptotic stability 

of the sliding mode control system. 
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However, the presence of the discontinuous term in equation 
(15) causes chattering which may excite high frequency 
unmodelled dynamics. In order to eliminate this effect, the 

sign function ( )sign s is replaced by the saturation function. 

, | |
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  (18)    

3.4 Lower-level Controller: Distribution of Yaw Moment  

In the lower-level controller the computed control yaw 
moment in the previous section is distributed to each wheel’s 
brake pressure and active steering angle. 

3.4.1 Optimum yaw moment distribution with ESC and 
AFS 

In the UCC, the braking force and AFS corrective angle are 
determined and the braking force is minimized using       
Karush-Kuhn-Tucker (KKT) optimality condition [6].  

The control yaw moment and tire forces are related 
geometrically when the control yaw moment is positive as 
shown in Fig. 3. This relationship is expressed as in (19) and 
the steering angle is neglected in this expression as it has less 
effect on the yaw moment distribution. 

1 3 1 2( ) ( )
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d
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Again we can write the braking force distribution for the rear 
tire as 
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The active lateral force for the tire 2 can be written as 
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Combining (19), (20) and (21) we get 
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In the UCC, the yaw moment distribution is prepared 
methodically as an optimization problem. This optimization 

problem has two variables, the longitudinal tire force 1xF of 

ESC and the lateral tire force 1yF of AFS, one equality 

constraint and one inequality constraint. The optimum 
distribution problem can be stated as follows: 

Minimize 

2
1 1 1( , )x y xL F F F                                                    (24) 

Subject to 

1 1 2 1 0
2 x f y z

d
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2 2 2 2
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Fig. 3: Geometric relationship between the  

control yaw moment and the tire forces. [13] 

The tire forces have to satisfy the constrains: (i) the sum of the 
generated  yaw moment by tire lateral and longitudinal forces 
should be equal to the desired yaw moment (25); and (ii) the 
sum of each tire lateral and longitudinal force should be 
smaller than friction of the tire (26). 

From equations (23), (24) and (25), we can define 
Hamiltonian H as [13] 

 2 2 2 2 2 2
1 1 1 2 1 1 1 12x x f y z x y z

d
H F E F l E F M F F F c            

  (27) 

where   and   are Lagrange multipliers and c  is the slack 

variable. 

Using KKT optimality condition, we can derive two cases as 
follows: 

CASE 1 0  , in this case the sum of each tire lateral and 

longitudinal force is smaller than friction of the tire and the 
optimum tire forces can be computed as 
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CASE 2 0  , in this case the sum of each tire lateral and 

longitudinal force is equal to the friction of the tire and the 
optimum tire forces can be computed as 
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where 1

2 2

,
2

z

f f

E d M

l E l E
    

Using the same procedure the optimum tire forces can be 
applied in the case of negative desired yaw moment. 

The braking force 3xF is obtained from 1xF using equation 

(20). The braking pressure of the wheels are computed as [13] 

w
B x

B

r
P F

K
                                                        (30) 

where wr  is the radius of a wheel and BK  is the pressure- 

force constant. The AFS angle is calculated from 1yF as 

1y
f

f

F

c
                                                          (31) 

Table 1: Vehicle parameters 

Vehicle mass ( m ) 1860 kg 

Yaw moment of inertia ( zI ) 2678.1 kg.m2 

Distance from front axle to CG ( fl ) 1.18 m 

Distance from rear axle to CG ( rl ) 1.77 m 

Wheel base ( d ) 1.575 m 

Front tire cornering stiffness ( fc ) 36000 N/rad 

Rear tire cornering stiffness ( rc ) 50000 N/rad 

Radius of wheel ( wr ) .205 m 

4. SIMULATION RESULTS AND ANALYSIS 

In order to investigate the proposed controller's performance 
simulations are carried out on high fidelity CarSim full vehicle 
model. The vehicle's parameters used in this work are listed in 
Table 1. The simulation results are obtained for step turn and 

single lane change maneuvers with the proposed controller 
and compared with the results obtained with the existing 
controller.  

4.1 Step turn simulation 

The comparisons of responses of the yaw rate of the vehicle 
model with the proposed controller for step steering wheel 

input is shown in Fig. 4 for 100xv  /km hr  and in Fig. 5 

for 120xv  /km hr . It is observed from the results 

obtained in Fig. 4 and 5 that the yaw rate of the vehicle with 
the proposed controller closely tracks the desired responses. 
But the yaw rate of the vehicle with the existing controller is 
not able to track the desired response satisfactorily. 

 

Fig. 4. Vehicle’s yaw rate response for step maneuver with 

100xv  /km hr  

 
Fig. 5: Vehicle’s yaw rate response for step maneuver with 

120xv  /km hr  
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Fig. 6: Vehicle’s yaw rate response for single lane change 

maneuver with 100xv  /km hr  

 
Fig. 7: Vehicle’s yaw rate response for single lane change 

maneuver with 120xv  /km hr  

4.2 Single lane change simulation 

The simulation results for this maneuver are shown in Fig. 6 

for 100xv   /km hr  and in Fig. 7 for 120xv   /km hr  

respectively. It can be observed from both the figures that the 
yaw rate responses of the vehicle with the proposed controller 
closely track the desired responses compared to the responses 
with the existing controller. 

5. CONCLUSIONS 

This paper proposes an adaptive sliding mode control law to 
determine the desired corrective yaw moment and an optimum 
yaw moment distribution for UCC with ESC and AFS is used 
in order to improve the stability, handling and comfort for a 
ground vehicle. Adaptive tuning rule for parameter k is used 
for the better performance over the fixed tuning parameter. 
Through simulation the proposed controller’s effectiveness is 
described and it can be concluded that the stability and 
handling performance of the vehicle is improved.  

Nomenclature 

ax, ay      : Longitudinal and lateral accelerations (m/s2)          
cf, cr         : Cornering stiffness of front/rear tires (N/rad) 
Fx, Fy, Fz    : Longitudinal/lateral/vertical tire forces (N)    
Fyf, Fyr      : Lateral tire forces of front/ rear wheels (N) 
Iz   : Yaw moment of inertia (kg.m2) 
KB   : Pressure-force constant (N.m/MPa) 
k             : Gain of the controller 
kp            : Proportional gain 
L             : Objective function 
lf, lr         : Distance from C. G. to the front/rear axle (m) 
m            : Vehicle total mass (kg) 
Mz          : Control yaw moment (N.m) 
PB          : Brake pressure (MPa) 
rd, r        : Reference and real yaw rates (rad/s) 
rw           : Radius of a wheel (m) 
s             : Sliding surface    
vx, vy        : longitudinal and lateral velocity (m/s) 

αf, αr,        : Tire slip angles of front/ rear tires (rad) 
β            : Side-slip angle (rad) 
δf           : Steering angle of front wheel (rad) 
Δδf         : AFS angle (rad) 
μ           : Tire-road friction coefficient 
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